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ABSTRACT 
n This report summarizes the major contributions and states of the art 

for film boiling. The topics covered a r e  (1) boiling of drops and puddles, (2) 

pool boiling for various geometries, and (3) forced convective film boiling 

inside channels and tubes. It also points out areas where more study are 

needed. 

I .  INTRODUCTION 

v) 0 Among the various modes of heat transport to liquids, film boiling is 
f- 
v) considered to be an inefficient mechanism. However, in many practical 

engineering applications it occurs. Consequently, film boiling must be 

studied and understood for design applications. Film boiling is invariably 

A 

encountered in quenching of metals, in chilling of biological species, in 

regenerative cooling of rockets, and in cooling down a cryogenic fuel tank, 

and sometimes film boiling can also happen in the nuclear reactor or in the 

cryomagnet. 

This paper will discuss what we know about film boiling and what future 

work would be productive or of interest. The author will not attempt to cite 

a every article on film boiling that appears in the literature. Instead, the part 

"What We Know About Film Boiling" is really meant to set the stage for 

"What We Would Like to Know, 

The discussion will be divided into three part@: film boiling of the un- 

constrained liquid mass (Leidenfrost phenomenon); the pool film boiling; 

and forced convective film boiling inside a channel or tube. 

TM X-52837 
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TI, FILM BOILING OF UNCONSTRAINED LIQUID MASS - 
"LEIDENFROST PHENOMENON" 

In this area, we refer to the film boiling of droplets, flattened drops, 

or liquid patches on a hot surface. The heat transfer rate is usually deter- 

mined by recording the evaporation time of the drop in film boiling. Work 

along this line is reported by Goldleski and Bell (ref. l), Gottfried and Bell 

(ref. 2), Pate1 and Bell (ref. 3), Watcher, Bonne, and Van Nouchuis (ref. 4), 

Baumeister, Hamill, and Schoessow (ref. 5 ) ,  and Bradfield (ref. 6). Re- 

cently, Bell (ref. 8) made a survey on this subject. The important topics in 

this area are the evaporation time, the Leidenfrost temperature (for defini- 

tion, see next section), and the effect of relative velocity between the drop 

and surface on heat transfer. 

1. Evaporation Time. A typical evaporation curve is shown in Fig. 1. 

To predict the evaporation rate, most researchers (e. g., ref. 5) postulated 

that the vapor formed at the interface flows laminarly along the bottom side 

of the drop through the thin vapor gap. The pressure gradient required to 

flow the vapor also causes the drop to be lifted above the plate. Due to the 

pressure distribution, the bottom of the drop should be curved upward in the 

center. However, the film boiling analysis is greatly simplified if the bot- 

tom of the drop is assumed to be flat. The drop bottom can be assumed to 

be rigid or circulating and the vapor flow boundary condition will be affected 

r accordingly. Wachter (ref. 4) considered four cases covering various com- 

binations of bottom shapes and flow boundary conditions. He found better 

agreement with the experimental data when the analytical model was based 

upon a flat bottom assumption. It would have seemed more realistic to use 

the curved bottom geometry but for some reason the prediction was poorer 

than for the flat bottom. It was speculated that oscillations of the drop bot- 
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tom may render an effective average surface which is flat. Baumeister, 

Hamill, and Schoessow (ref. 5) analyzed the Leidenfrost problem by ap- 

proximating the drop with a flat cylindrical body. They found that the re- 

lation between the volume of liquid drop and its thickness can be expressed 

by a simple power function in three segments as shown in Fig. 2. In this 

way, the mathematics was greatly simplified to enable a closed form solu- 

tion. They were also able to form dimensionless groupings correlating 

heat transfer rates with the liquid masses o# various sizes, as shown in 

Fig. 3 (see table I also). In the analysis in Ref. 5 the subcooling effect and 

the vapor diffusion to  the atmosphere were neglected. Experimental results 

of Ref. 4 show that higher heat transfer rates exist in a dry atmosphere 

than in a saturated one. Such a result cannot be explained by considering 

only the bottom of the drop; the top and edges of the drop must also contrib- 

ute to the higher rates. Therefore, for drops in a dry atmosphere some 

modification of the model postulated in Ref. 5 is needed. Bradfield (ref. 6) 

and Cumo, Ferello, and Ferrari (ref. 7) showed experimentally that inter- 

mittent liquid-solid contacts exist across the vapor gap. The contact prob- 

ability diminishes with increasing AT. All these were not taken into ac- 

count in the model proposed by Baumeister, Hamill, and Schoessow 

(ref. 5). However, these effects may be important only in the low A T  

range, and their importance decreases with increasing AT. 

The theory of Baumeister and Hamill (ref. 5) was recently tested by 
w 

Keshock and Bell (ref. 8) against experimental results with nitrogen. They 

found that Baumeister and Hamill's equation predicted the evaporation time 

well for small drops, but overpredicted the time for large liquid masses. 
They proposed that the breakthrough of the vapor-domes should be considered 
for film boiling models with large liquid masses. 

rb 

2 a Leidenfrost Temperature. The so- called Leidenfrost temperature is 
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the temperature at which the transition from the film boiling mode to the nu- 

cleate boiling mode takes place as shown in Fig. l .  Bell (ref. 8) surveyed 

various contributions on this subject and showed that the data were very 

scattered. He even mentioned that results obtained by different investiga- 

tors on the same experimental apparatus can be significantly different. It 

appears that some of the human factors involved are the technique of placing 

the drop on the plate and the judgment about the termination of Leidenfrost 

state, The first source of e r ror  can only be reduced by placing the drop on 

the plate as gently as possible. The second e r ro r  can be eliminated by rely- 

ing on continuous temperature recording instead of visual judgment. There 

are other factors that can cause e r ro r  which are related to the test system: 

(a) Solid-liquid contacts - Bradfield (ref. 6) reported intermittent solid- 

liquid contact during stable film boiling and noted that the contact increases 

with the roughness of the solid, wettability of the surface and the porosity of 

the solid. Presumably, this solid-liquid contact precedes the Leidenfrost 

transition. Intuitively, it seems to the wri ter  that, holding temperature con- 

stant, the area fraction of solid-liquid contact ought to increase with increas- 

ing mass. The change of contact area with drop size should cause a change 

in Leidenfrost temperature. Yet, according to  an unpublished work of 

Baumeister, Henry, and Simon (proposed NASA publication) ethanol drops 
3 3 of 0.0125 cm and 6 cm showed very little difference in Leidenfrost tem- 

perature. Roughness of surface also affect the solid-liquid contact, as re- 

ported in Ref. 7. 

(b) Thermal properties of the solid - Many of the Leidenfrost experi- 

ments were carried out by placing a drop onto a preheated plate at an initial 

temperature Two and then observing whether transition takes place or not. 

E the transition takes place, the initial temperature is reported as the 
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Leidenfrost temperature. Since most of the plates were not equipped to 

maintain uniform and constant temperature, the initial temperature is cer- 

tainly higher than the temperature at the location and time that Leidenfrost 

transition takes place. Figure 4 shows the temperature record of stainless 

steel and aluminum in determining the termination of Leidenfrost state. 

is clear that aluminum, with greater thermal diffusivity, approaches closer 

to the isothermal condition than stainless steel. Certainly those Leidenfrost 

data involving quenching of low diffusivity materials must be examined as to  

how the surface temperature was determined. Apparently Cu, Brass, and 

A1 are close to the isothermal case, stainless steel is marginal, and glass 

will introduce serious e r ror  if the initial temperature instead of the actual 

transient temperature is used. 

It 

(c) Coating or  scale - It was observed by Hoffman (ref. 9) that oxide 

scale can promote the transition from Leidenfrost condition to nucleate boil- 

ing. A similar effect was observed by Bradfield (ref. 6). Maddox and 

Frederking (ref. 10) and Allen (ref. 11) all reported earlier transition to  

nucleate boiling during cooldown when the tubes were coated with Teflon, 

mylar, Zn029 etc. Recent studies of Baumeister, Henry, and Simon 

showed that the Leidenfrost transition temperature for a freshly polished 

and cleaned surface is much lower than those for the subsequent drops on 

the same location. They attributed this upward shift in the Leidenfrost tem- 

perature to the formation of oxide. - 
(d) Wettability - Burge (ref. 12) studied the behavior of liquid metal 

sprays introduced on a hot molybdenum-titanium surface. He noted that 

the wetting sodium or lithium drops would flatten out and eventually spread 

over the surface, but nonwetting mercury drops would flatten and recoil f rom 

the surface. 
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(e) Metastable condition - In the absence of vibration, disturbance, 

roughness, etc., a Leidenfrost drop may persist even i f  the temperature of 

the surface is cooled down well below the common range of the Leidenfrost 

temperature. This phenomenon was observed by Baumeister, Hendricks, 

and Hamill (ref, 13). The existence of metastable mode was also observed 

in Ref. 4 and it was hypothesized (ref. 4) that a dtog could persist in the 

Leidenfrost mode as long as the surface temperature is higher than the dew 

point of the environment. 

3. Velocity Effect on Drops. The effect of velocity is different depend- 

ing on whether the velocity vector is parallel or  perpendicular to the surface. 

The effect of parallel velocity is to increase the heat transfer rate. An em- 

pirical correlation was proposed in Refs. 14 and 15 to account for the en- 

hanced heat transfer. The velocity range studied was from 0 to 15 ft/sec 

(46 cm/sec). The effect of impinging velocity normal to the surface is more 

drastic than the translational velocity along the wall. Wachter and Westerling 

(ref. 16) showed that, for a saturated liquid, when the impinging velocity was 

high (Weber number larger than 30), the drop would deform and flatten out 

and vibrate; for very high velocity (Weber number larger than 80), the drop 

would disintegrate. 

impinging on a hot plate. He reported that there was flattening of the drop 

at center region and that boiling took place at the edge of the flattened disc. 

He hypothesized that the impact pressure caused the liquid to be highly sub- 

Burge (ref. 12) experimented with a high velocity spray 

cooled at the center of the drop. However, at the edge of the drop, the pres- 

sure  was low enough to permit boiling. 

4. Discussion. In the area of film boiling of drops and puddles, there 

a re  several subjects worthy of further study. 

(a) The vapor velocity at the liquid-vapor interface is still an unknown. 
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The true boundary condition at the liquid-vapor interface is somewhere be- 

tween slip and nonslip condition, depending on the presence or absence of im- 

purities and also upon the surface properties of the fluid. In general, circu- 

lation can be observed if the liquid is clean, then the boundary condition prob- 

ably tends toward the slip condition. However, more study of the surface 

phenomena is needed to  reach a definite conclusion about the boundary con- 

dition. 

(b) The effect of mass diffusion from the drop to the atmosphere should 

be considered and incorporated into any general correlation. 

(c) The relation between vapor gap thickness surface roughness and prob- 

ability of solid-liquid contact should be quantitatively determined. 

(d) The problem of quenching with a high velocity impinging jet is an 

interesting subject requiring more study. Practically speaking, this is a 

very important industrial application of film boiling. Academically, it is al- 

ways an intriguing question as to the state of the fluid near the wall and the 

mode of heat transfer involved when a highly subcooled liquid makes contact 

with a hot solid of several thousand degrees in temperature. On impingement, 

the instantaneous liquid pressure may become supercritical before reverting 

to its initial subcritical pressure. 

111. POOL BOILING 

Pool film boiling has been surveyed previously by Brentari and Smith 

c (ref. 17) and by Clark (ref. 18). In the present study, we will mention the 

more recent development and discuss the areas where more work is needed. 

The survey will be presented basically according to  the geometry of the 
c 

heater; namely, vertical surface, horizontal surface, horizontal cylinder, 

sphere, and then a special section on boiling helium. 

1. Vertical Surfaces. Early work on film boiling on a vertical surface 
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was done by Bromley (ref. 19) who followed the same approach used by 

Nusselt for film condensation. The vapor formed by evaporation was as- 

sumed to  flow laminarly upward under the influence of a buoyance force. 

The interface was assumed to be smooth, with vapor velocity at the inter- 

face either zero or maximum (no-slip or slip boundary condition). The heat 

transfer coefficient equation was shown to be (ref. 20) 
+ 

1 /4 

h =  
0.732 

where the two coefficients, 0.5 and 0.732, are for the no-slip and slip 

boundary conditions, respectively. Equation (1) apparently predicts film 

boiling for a short, lower portian of the surface fairly well. Many papers 

pursued the same laminar flow approach but with more refinements to take 

into account convection effects and subcooling effects. Notable ones are 

those by Koh (ref. 21), Sparrow and Cess (ref. 22), Tachibana (ref. 23), 

Nishikawa (ref. 24), McFadden and Grosh (ref. 25), etc. All these refine- 

ments, however, only brought a limited improvement over the original 

crude approach, and are restricted to  the idealized case of laminar flow 

with a smooth interface. Hsu and Westwater (refs. 26 and 27) found that 

Bromley's equation underpredicted experimental data when the height of the 

heating surface was larger than 1 in. (2 to 3 cm). They noted the presence 

of a wave profile at the interface which invalidated the basic assumptions of 

laminar flow in a smooth channel. With the onset of a wavy interface, the 

laminar velocity profile can no longer hold. They proposed a model assum- 
a 

ing the onset of a turbulent film instability at a critical Reynolds number. 

The vapor flow is assumed to have a laminar sublayer and a turbulent core. 

The approximate model was later modified and extended by Dougall and 
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Rohsenow (ref. 28) to include the resistance at the side of the liquid-vapor 

interface. Dougall considered the region near the vapor-liquid interface as 

a turbulent layer, or as a buffer layer with a turbulent layer. The resulting 

predicted heat transfer coefficient is 100 percent higher than Bromley's but 

50 percent lower than that by Hsu and Westwater. Morgan (ref. 29) treated 

the turbulent layer by integrating assumed velocity and temperature profiles. 

Recently, Greitzer (ref. 30) decided to  examine experimentally the flow pat- 

tern in wavy channel. He built a water cbnne l  with the wall-contours 

modelled after the wave profile at the liquid-vapor interface observed by 

HSU (ref. 27). He then observed the flow pattern in the channel using dye 

tracer at a proper Reynolds number. He found that in the crest  of the vapor 

wave, a big eddy was present while laminar flow was observed in the thin 

layer adjacent to the wall with the thickness about the same as that of the 

film thickness at the wave valley. The presence of wave pockets appar- 

ently took most of the vapor flow away from the regular laminar flow chan- 

nel. The net result is a thinner thermal resistance layer near the wall. 

Thus it appears that the waves on the interface should be an important fac- 

tor in analyzing film boiling and attention is beginning to be paid to this 

factor. Simon and Simoneau (refs. 31 and 32) studied film boiling at con- 

stant heat flux. (Most of the previous analyses had been for constant wall 

temperature. ) They took many high-speed motion pictures showing the de- 

tailed structure of the wavy liquid-vapor interface and measured the maxi- 

I 
mum and minimum thickness of the vapor film. They also showed that due 

to the presence of a wavy interface the time-averaged thermal resistance 

is smaller than a value based upon mean film thickness. The effective film 

resistance appears to be associated with the minimum film thickness of the 

wavy pattern (fig. 5). A similar hypothesis has been advanced by Coury (ref. 33). 
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It should also be mentioned that Coury (ref. 33) observed a significant amount 

of fluctuation in thermocouple reading indicating liquid and vapor contact. The 

frequency was in 100 to 1000 cps range. This information indicates that when 

the wave amplitude is high, it might cause occasional contact of the liquid with 

the heating surface. 

2. Film Boiling from Horizontal Surfaces. The problem of film boiling 

from horizontal surface was first studied by Berenson (ref. 34) who assumed 

that Taylor instability causes breakup of waves in a cell pattern with the dis- 

tance between bubbles being equivalent to the most dangerous wavelength. 

The vapor being generated is considered to flow laminarly into the vapor 

domes which are spaced at a distance equivalent to  the most dangerous wave 

length Ad associated with Taylor's instability. The resulting equation of 

Berenson's is similar to  Eq. (1) with the wavelength Ad being used as the 

length parameter, and with the coefficient being changed. A similar equation 

was obtained later by Baumeister and Hamill (ref. 35) who showed by maxi- 

mization principle that Ad is the optimal spacing between domes for the 

maximum heat transfer coefficient (i. e., ah/aL = 0 at L = xd). Ruckenstein 

(ref. 36) also analyzed the problem of film boiling on a horizontal surface. 

He used Taylor's instability to determine the bubble spacing and used bubble 

departure criterion to determine vapor removal rate. In all the above analy- 

ses, the vapor flow was assumed to be laminar, and the vapor domes were 

assumed to be regularly arranged. The alternative assumptions would be 

turbulent flow of vapor and irregular distribution of domes. Frederking 

(ref. 37) made an interesting comparison of the four combinations of the 

various alternative hypothesis, as shown in table I. 

Frederking, Wu, and Clement (ref. 37) compared these correlations 

against the data of water, freon, CC14 and N-pentane as well as their data 
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of He-1, a fluid with very low a/p and therefore a very low L, and found 

that the (Ra) 1/3 correlation represents the experimental results better. He 

further concluded that since the length parameter L cancels out in the 

(Ra) 1/3 correlation thus the model of irregular cell distribution represents 

the true picture better. The experimental measurement of cell distribution 

by Hosler and Westwater (ref. 40) tended to show that the distribution is 

indeed irregular (fig. 6) and that the minimum inter-bubble distance is close 

to the most dangerous wavelength. The correlation of hydrocarbon data by 

Sciance et al. (ref. 41) and by Colver and Brown (ref. 42) show that the Nu 

is proportional to Ra 267 which is between the Berensen's (ref. 34) and 

Chang's (ref. 38) model. All  this shows that perhaps the Laplace length 

I 

"L = d a / [ g ( p l  - pV)l offers a basis for model postulation. But due to the 

nature of film boiling mechanism, the parameter k is only a weak con- 

trolling factor in film boiling correlation for horizontal surface. It should 

be added that although helium data of Ref. 37 appear to follow (Ra) trend, 
it was difficult to say whether water, CC14, freon, etc. follow the (Ra) 1 /3 

or  (Ra)1/4 trend. Since hydrocarbons follow the (Ra) o*267 trend, it is 

likely that the exponent of Ra may vary with the Ra or with fluid proper- 

ties. (More will be discussed in section 3 . )  

The heat transfer rate for film boiling horizontal surface is solely de- 

pendent upon the rate of removal of vapor. Since removal rate from above 

is not very easily controlled, attempts have been made to remove vapor 

through porous heat surface (refs. 43 to 45).  The heat-transfer rate 

can then be improved by increasing the suction rate. Early attempts 

found that the vapor film could be unstable when the suction rate was 

too high and tongues of liquid would enter the porous media. The prob- 

lem was solved later by covering the porous heating surface with 

b 
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another thin porous heet, such as asbestos or ceramic sheet which apparently 

prevented liquid from touching the heater. 

All the above work was mainly for saturated fluid and neglecting radia- 

tion contribution. An interesting analysis was proposed by Hamill and 

Baumeister (ref. 46) who considered the effect of subcooling and radiation on 

film boiling from a flat plate. They concluded that for very large subcooling, 

film boiling cannot be sustained. It would be interesting to  test their hypo- 

thesis experimentally. 

3. Film Boiling from a Horizontal Cylinder. Bromley studied this prob- 

lem in the early 1950's and the result was the famous Bromley equation 

(ref. 20) 

But this equation was derived for laminar flow with the buoyancy force bal- 

anced by the viscous force. It was later found by Breen and Westwater 

(ref. 47) that Bromley's equation failed to be valid for very small tubes 

where surface force becomes important and for  large tubes where turbulence 

might set in. They proposed a correlation in which the length ratio of (L/D) t 
was plotted against the ratio 

h 

c 

?The ratio L/D = + k ( p ,  - pv)D2] can be considered as (Bo) -1/2 

where Bo is the Bond number. Bond number represents the ratio between 

the body force to the surface force. 
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The correlation showed that when the length ratio approaches zero (i. e. ,  the 

case of large cylinder), the heat transfer reduces down to Berensen's equa- 

tion for horizontal surface and that when the length ratio is very large (i. e., 

the case of small wires) the h-ratio is proportional to the L/D. Later 

Baumeister, Hamill (ref. 48) derived an equation with similar functional 

groupings. The equation was based upon the assumption that vapor flows 

axially into the periodically-spaced vapor domes, This assumption is a de- 

parture from Bromley's circumferential-flow model. The comparison of 

Baumeister and Hamill's equation with experimental data of most organic 

fluids and water were good. However, recent nitrogen film boiling data are 

separated from the rest of the points as shown in Fig. 7 (ref. 49). Park, 

Colver, and Sliepevich (ref. 50) also noted that the film boiling data for ni- 

trogen was segregated from the other fluids. The reason for this discrep- 

ancy is unknown, and may be worthy of investigation. 

All the correlations for the horizontal cylinder are based upon the as- 

sumption of laminar flow in a smooth vapor gap. Such an assumption might 

be correct for the lower half of the cylinder but certainly do not reflect the 

true situation at the upper half, where flow pattern is wavy and chaotic, es- 

pecially for larger tubes. Yet the existing correlations were able to  make 

fairly close predictions of the overall heat transfer rate. This moderate 

success might be due either to  fortuitous coincidence, or to  some other un- 

known reason. However, since the e r ro r  range is about *25 percent, fur- 

ther refinement in modelling may not necessarily bring much improvement. 

There are some other interesting studies in the film boiling from hori- 

zontal cylinders. Bromley, LeRoy, and Robbers (ref. 51) studied the ef- 

fect of cross flow and found that the velocity effect is negligible when 

(/!a) < 2 but became dominant for ( u / m )  > 2. The effect of pulsa- 
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ting pressure on film boiling of CC13F was studied by DiCicco and Schoenhals 

(ref. 52) for G P  = 90 psi. They found that when the frequency is low the heat 

flux was higher than the average value of heat flux without a pulse and the heat 

flux at peak pressure (i. e., h > 1/2 (hnopulse+hatpeakpress~~. exP 
For high frequency the heat flux with pulse is even higher than that 

to be expected for a steady pressure field at peak value where sub- 

cooling is very high. The transient behavior of a wire, when given a sudden 

temperature rise to achieve film boiling mode, was analyzed and measured 

by Pitts, Yen, and Jackson (ref. 53). The experimental result indicates 

that the temperature took a finite time to  reach the pre-set value presum- 

ably due to solid-liquid contact, 

One curious omission is the study of film boiling on a bank of tubes. 

This is certainly a practical problem for heat exchanger or cooling design. 

One can well imagine the important effect of the vapor wake behind a tube in 

determining the spacing of the heating tubes. The spacing between adjacent 
r 

tubes should affect the heat transfer too. 

4. Film Boiling from a Sphere. Data for film boiling from a sphere is 

mostly obtained by quenching of a submerged sphere. Experimental data 

for water, nitrogen, and freon have been reported by Bradfield (ref. 54), 

Merte and Clark (ref. 55), Frederking, Chapman, and Wang (ref. 56), 

Frederking and Clark (ref. 57), Hendricks and Baumeister (ref. 58), etc. 

Frederking and Clark (ref. 57) derived an expression similar to Bromley's 

analysis with the coefficient of 0.586 (see Eq. (5)). But they found that the 

experimental data of nitrogen for spheres and other geometries could be all 

correlated by an equation 
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However, their correlation was based upon data obtained from limited range 

of diameters. Hendricks and Baumeister (ref. 58) observed that the above 

correlation did not predict the film boiling data for small spheres. Instead 

they found that the equation relating Nu with both Ra and Bo numbers de- 

rived by Hendricks and Baumeister (ref. 59) was able to correlate those data. 

However, although their equation predicts overall heat transfer coefficient, the 

same criticism leveled at the analyses for film boiling from cylinders can be 

made for the case of spheres; namely, the vapor flow conditions on the upper 

half of the sphere are not steady laminar, as assumed in the model. It was 

shown in Ref. 59 that laminar and pseudo-laminar flow exist in the lower 

half of the sphere but became turbulent in the top part for the spheres of di- 

ameter around 1 cm submerged in nitrogen. More turbulent region is ex- 

pected if the spheres are larger. 

The discrepancy between the overall macroscopic result and the micro- 

scopic measurement of film boiling on sphere was also reported by Frederking, 

Chapman, and Wong (ref. 56) for nitrogen. They measured local vapor film 

thickness fluctuated with time (Fig. 8). The peak value was much higher than 

that calculated from the film boiling equation. However, the overall average 

heat transfer rate could be successfully predicted by the same equation. It is 

not known whether such inconsistency is peculiar to  nitrogen or to  all the 

normal fluids. The discrepancy certainly warrants further investigation. 

When a hot sphere is placed on the free surface of a liquid to setup film 

boiling, the sphere may be kept floating by the combination effects of the 

buoyancy force and a surface force even if the sphere density exceeds the liq- 

uid. Such interesting phenomenon was studied by Hendricks, Baumeister, and 

Ohm (refs. 60 and 61) and shown dramatically in a movie. Another puzzling 

thing is that floating spheres tend to  attract each other. The questions to ask 
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are: what is the effect of the curvature of the hot body on flotation; and what 

is the range of influence of each sphere? 

The result of studies of forced cooling of a hot sphere with highly sub- 

cooled liquid are very puzzling. Bradfield (ref. 59) measured the heat flux 

as a function of wall superheat with various liquid subcooling by quenching 

copper spheres with subcooled water and he found a very strong subcooling 

effect. Witte (ref. 62) derived a film boiling equation for a sphere with im- 

posed velocity Ua. His equation was similar to Sparrow's (ref. 22) analysis 

of film boiling with forced convection along a plate, except that he used 

spherical geometry. But his equation apparently underpredicted his own ex- 

perimental data for quenching tantalum (ref. 63) spheres by subcooled sodium. 

Considering a 1/2 inch (1 .25  cm) tantalum sphere, at 3500' F (2200 K) moving 

through 572' F (574 K) sodium at 10 ft/sec (304. 5 cm/sec), his analysis 

would result in a film thickness of loe6 in. (2. 5X10-6 cm), which is smaller 

than the surface roughness. J3 the experimental heat transfer rate were used, 

the film would be even thinner. Therefore, he concluded that there must be 

liquid-solid contact. Comparison with Sideman's equation (ref. 64) for non- 

boiling forced convective cooling of a solid sphere with a liquid show that the 

prediction is about 1 . 7  times the experimental result, if AT is assumed to 

be the wall temperature minus the liquid temperature Tw - Tl. Later 

Jacobson and Shair (ref. 65) measured the heat transfer rate of a steel 

sphere in flowing water (at 12.2' to 50.6' C) under steady conditions. Their 

results are similar to the findings of Witte et al. (ref. 63) (i. e., liquid-solid 

single phase forced convective cooling prevails). However, their visual ob- 

servation indicated the presence of a vapor film, which is contradictory to 

the previous conclusion. Therefore, it seems that the underprediction by 

Witte's film boiling equation may either indicate the strange behavior of liquid 
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metals or indicate that a new analysis is needed, instead of just discounting 

the existence of a vapor film. In Witte's (ref. 62) analysis, he neglected all 

the heat transfer contribution by the surface downstream of the separation 

locus, which was assumed at an angle of 77/2 from the frontal stagnation 

point. The wake region may well have a much higher heat transfer rate than 

that in the frontal region. 

5. Film Boiling of Helium. Since He - IT is a superfluid, the behavior of 

He is somewhat different from normal fluids in many respects, including 

their peculiar characteristics in film boiling. Much research has been con- 

ducted in this area, notably those listed as Refs. 66 to 71. In Frederking's 

survey paper (ref. 63) a section was devoted to film boiling of He. 

Basically, when a heating surface in a He - '11 bath is heated up to the 

A-temperature, a film of He - I is developed separating the superfluid He - I1 

from the heating surface. He - I is lighter than He - I1 and rises in the film 

to form a plume above the heating surface. If the pressure is below the 

A-point, the film boiling occurs separating He - I1 from the surface. The 

unique features of film boiling of He - TI are: 

(a) Strong depth effect - The heat transfer rate is strongly dependent upon 

the depth of immersion of the heater, the heat flux is higher with increasing 

of depth. (Goodling and Irey (ref. 67); Trey, McFadden, and Madsen (ref. 68); 

Lemieax and Leonard (ref. 69).) It was hypothesized by Rivers and McFadden 

(ref. 70) that at a depth He - I1 is in an effective subcooling condition. This is 

due to the uniformity of the bath temperature of He - TI which is equal to the 

saturation temperature at the free surface. Since the local saturation tem- 

perature increases with depth due to  hydrostatic head, the subcooling increases 

with the depth. A detailed study of depth effect is needed. 

(b) Noise in film boiling - Coulter, Leonard, and Pike (ref. 71) reported 
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.hat film boiling can be accompanied with noise or without it. 

without noise, very few bubbles were observed. More bubbles were ob- 

served when noise was present but no thermal current was observed in the 

He - 11. 

For the case 

(c) The He - I1 film boiling heat transfer rates are much higher (by an 

order of magnitude) than that predicted for a normal fluid using an equation 

such as Breen-Westwater’s, except when AT is large so  that He - 1 is 

formed (ref, 72). He - 1 shows the same heat transfer characteristics its a 

normal fluid. 

6.  Discussion. It appears that for  pool film boiling of a normal fluid, 

the existing equations were able to predict overall heat transfer rate fairly 

well. However, the models on which all these equations were based appar- 

ently cannot quite describe the physical picture, including the pattern in the 

upper half of the curved surfaces, the film thickness, etc. 

The forced convective cooling of a highly-superheated surface by a sub- 

cooled liquid is still quite intriguing. Much needs to be resolved to arrive 

at a reasonable understanding. These include the frequency of solid-liquid 

contact, the time required to transit into film boiling, the character of a 

very highly superheat liquid, etc. 

He - 11 remains as an enigma. Quantitative analysis is still lacking, in- 

cluding the depth effect. 

TV. FILM BOILING IN A CHANNEL 

1. Flow Pattern. 

(a) Film boiling in a channel can have one of two configurations. 

(i) The heating surface is separated from the core by a vapor film, with 

the core made up of a liquid interspersed with gas phase. This is the case 

when the void fraction is low. This can be called flow film boiling. 
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(ii) The core is made up of vapor phase with liquid droplets dispersed in 

the vapor matrix. This is the case where the void is high. It can be called 

dry-wall mist flow. 

(b) The situation also varies with the condition of the heating surface. 

If the heating surface is of constant heat flux type, the film boiling required 

may be in coexistence with the wet-wall regime (where nucleate boiling or 

evaporation exist). Rise or fall of the heat flux would shift the intersection 

zone between the dry-wall and wet-wall regions up or down stream. If the 

heat flux is high enough s o  that wall temperature is higher than the Leiden- 

frost temperature, the wet wall zone may be pushed out of the heating sec- 

tion. This is usually the case for cryogenic fluids. The other type is the 

constant temperature case where the wall temperature is held constant by 

means of heating with a hot fluid or using thick heating surface of large ther- 

mal diffusivity. If the wall temperature is set above the Leidenfrost tem- 

perature, there is no wet-wall regime. Typical temperature or heat flux 

profiles of these two types are shown in Fig. 9. Most experimental studies 

on this subject were carried out with an electrically-heated tube, and thus 

were the constant heat flux type. Examples are given in Refs. 7 3  (Hendricks, 

Graham, Hsu, and Friedman); 75 (Lewis, Goodykoontz, and Kline); 76 

(Ward); 77 (G. E.). For the constant wall temperature experiment, an ex- 

ample is the experiment done by Rankin (ref. 78). 

2. Correlations. Empirical correlations in this regime include that 

proposed by Hendricks, Graham, Hsu, and Friedman (ref. 73) to treat the 

vapor film annular flow in the same fashion as Martinelli did with liquid 

film annular flow. The parameters $t and NU/NUcalc were used to  cor- 

relate the data. The t e rm Nucalc was calculated from Dittas-Boelter's 

equation using properties based upon a dispersed flow model. Thus it is a 
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parameter more suitable for dry-wall mist flow regime. The parameter 

on the other hand, is derived from an annular flow concept. Tn the high 

quality region, Nucalc approaches that of gas correlation and thus is inde- 

pendent of y+., Tn the middle quality range, the correlation worked fine. In 

the low quality range, the scattering was large. This scattering is either 

due to the entrance effect or due to the invalidity of Nucalc for  annular re- 

gion. It wag difficult to  discern which caused the more serious trouble. 

Other carrelations involving modifying gas-phase convention equations were 

proposed by G, E. (ref. 77) and Westinghouse (ref. 76). 

3. Analysis. Most of the analyses fsr forced convection film boiliw 

xtt, 

were aimed at the dry mist regime, Only Dougall's (ref. 28) analysis w;ts 

aimed at the flow film boiling regime. He hypothesized the existence of 

thermal resistance at the liquid-vapor interface, which was contributed by 

a laminar zone, a buffer zone, and a turbulent zone. As the film Reynolds 

number was increased, the various zones of resistance were gradually re- 

moved. In dispersed flow none of them remained. 

For the dry-wdl mist flow regime, Hsu, Covgill, and Hendricks (ref. 

79) attempted to represent the fluid properties by using synthesized proper- 

ties from mixtures of liquid and vapor weighted according to the local void 

fractios, The two-phase flow problem is thus reGuced to a single-phwe 

variable property problem. However, their analysis met only moderate 

success due to  the lack of information as to the distribution profile of drop- 

lets and the behavior of those droplets and turbulence under accelerating 

conditions. 

Two principal problems about film boiling in a channel are the effect of 

acceleration (the increase of volumetric flow rate due to the increase of void 

fraction) and the effect of thermal nonequilibriurn. The effect of acceleration 
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on turbulence boundary layers caused by thermal expansion is still a field 

virtually untouched and may prove to be very fertile. The acceleration of 

drops and the nonequilibrium aspect of the problem have been partially dealt 

with by a series of MIT reports (Laverty, ref. 80; Forslund, ref. 81; Hynek, 

ref. 82) and by Bennett, Hewitt, Kearsey, and Keeys (ref. 83), etc. By 

measuring the corresponding wall temperature for a given heat flux, Laverty 

(ref. 80) was able to calculate the vapor temperature and showed that the 

vapor in the core was highly superheated with drops at saturation tempera- 

ture dispersed in it., From the temperature profile of vapor in the core, the 

heat available for evaporation can be determined. Then the size of the drops 

can be estimated by considering the total drop surface area available, for heat 

transfer. Laverty's estimation of drop sizes was later verified by Forslund's 

experimental data (ref. 81). Forslund also developed a program by which 

the evaporation rate and the acceleration rate of drops can be determined. 

This program was later modified and improved by Hynek (ref. 82). In their 

program the wall is considered to be cooled both by the vapor phase forced 

convection and by the impingement of liquid drops. The drop size W ~ S  sub- 

ject to a critical Weber number We* < 7.5. The resulting wall temperature 

profile for various fluids was found to  be fairly close to the prediction value, 

provided that the values of empirical parameters (K1, K2) were varied from 

fluid to fluid. These parameters were included to  account for the fraction of 

drops hitting the wall (K1) and to  account for  the deceleration experienced by 

the drop upon impinging (K2). Both parameters are unknown. Apparently, 

while some progress was made in estimating drop acceleration and dPop 

breakup, much study is needed to  determine the drop depositon rate and to  

determine impinging deceleration. $ 

Bennett, Hewitt, Kearsey, and Keeys (ref. 83) took an approachbimilar 
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to  that taken by Forslund and Hynek with a few variations. One variation is 

to neglect the contribution of the liquid drops in cooling the wall. Another 

variation is to determine the saturation temperature of the drop by consider- 

ing simultaneously the conduction of heat to the drop and the diffusion of vapor 

from the drop. Their calculated wall temperature was found to be very close 

c to the experimental value. They also considered two extreme conditions: 

either the drops assume thermodynamic equilibrium or  they are in non- 

equilibrium stat e without evaporation taking place (labelled 'nonevaporat ive' ') . 
It was shown that the experimental result approached the equilibrium case at 

high mass velocity and approached the nonevaporation situation at low mass 

velocity (Fig. 11). 

The body-force effect on film boiling in a channel has been reported by 

Papell (ref. 84). Wall temperature distributions along the test section are 

presented for 1, 2, and 3 g's. It was found that increase of g-load shift the 

wet-wall zone downstream. Film boiling in horizontal tubes was studied by 

Kruger (ref. 85). Pressure and heat transfer of He - I in a helically coiled 

tube were studied by de La Harpe, Lehongre, Mollard, and Johannes (ref. 

86). The entrance effect to film boiling was studied by Papell and Brown 

(ref. 87). 

over that of the fully developed flow. 

Discuss ion 

They found a great improvement in heat transfer coefficients 

Although much progress has been made in studying convective film 

boiling in a channel, we still need the following information: 

(1) Two-dimensional profiles of drop distribution 

(2) Drop size distribution 

(3) Behavior of an accelerating boundary layer under thermal expansion 

(4) Kinematic relation among velocity profile, void profile, and slip 
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ratio similar to  those developed by Zuber and Findley (ref. 88) for 

bubbly flow 

Another important area is to determine the transition between the regime of 

flow film boiling with liquid core and the regime of dry-wall mist flow. The 

models postulated for these two regimes must be different and appropriate 

for the particular regime, and then the application limit of each regime must 

be established. 

Conclusion 

It appears that for Leidenfrost boiling and pool film boiling, we are now 

able to  predict the overall heat transfer coefficient for various geometries 

with moderate success. A few notable exceptions a re  the strange behavior 

of nitrogen and helium. However, all the models giving overall correlations 

still fail to  describe closely the details of the physical phenomena involved. 

For two-phase flow film boiling there are still some uncertainties in 

predicting the overall heat transfer coefficient. More study is needed to 

understand the effect flow acceleration, drop distribution, drop impinging, 

etc. 
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SYMBOLS 

A 

c 

CP 

D 

G 

K 

L 

I 

Nu 

P 

p, 

Pr 

Q 

q 

Ra 

T 

A T  

t 

U 

V 

x 
6 

E 

x 

area 

const ants 

specific heat of constant pressure 

diameter 

mass velocity 

gravitational acceleration 

heat transfer coefficient 

thermal conductivity 

Laplace length 

drop thickness 

T” 

-*- 

Nusselt number 

pressur e 

critical pressure 

Prandtl number 

heating rate 

heat flux 

Raleigh number 

temperature 

temperature difference 

time 

velocity 

volume 

distance from leading edge 

vapor gap thickness 

ratio of vapor gap thickness at valley to  the mean thickness 

latent heat 
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A* modified latent heat to include sensible heat effect 

dangerous wavelength in Taylor's instability 

P density 

CT surface tens ion 

E-L viscosity 

Xtt Martinelli parameter 

Subs cr ipt s : 

calc calculated 

exp experimental 

2 liquid 

sat saturation 

V vapor 

W wall 
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Dimensionless heat 
transfer coefficient, 

h h* = 

(*9,*(% - ' v ) ' & y  
AT pL 

TABLE I. - SUMMARY TABLE FOR LEIDENFROST DROP RESULTS FROM REFERENCE 5 

[Effect of vapor density on drop shape and drop buoyancy has been included in this table. It was not included in reference 5. ] 

Dimensionless vaporization time 
t t* = 

limensionless Drop shape 
volume I range, 

h* = 1 . 1 V  *-1/12 

h* = 1. O75V*-'I6 

*-1/4 h* = 1.64V 

I* < 0 . 8  Small t* = I. 2 1 ~ * 5 / 1 2  

t* = 2. H V * ' / ~  - 0.97  

t* = 4 . 5 2 ~ * ' / ~  - 5 

I* < 0 . 8  Small 

- 
I. 8 < V* < 155 

V* > 155 

spheroid I. 
Large drop 

I, 
TmTI-rrrrrTl 

Extended 
drop (con- 
stant thick- 
ness) . - 

11111, 

1* = 0. 8V *1/6 

I* = 1 . 8 5  

limensionless Dimensionless 
average drop area, 

* A  A = -  thickness , 
* l  1 = -  

L 
L2 

A* = 1 . 2 5 ~ * 5 / 6  

A* = 0 . 5 4 V *  

Dimensionless vapor 
gap thickness 
beneath drop, 

6 

6 * = 0 .  93V*'l6 

*1/4 6* = 0 . 6 1 V  

where 



TABLE II 

I Regular Cell Distribution 
I 

where L = 

is a parameter. 

Irregular Cell Distribution 

where cell-spacing distance 

varies over wide range. Tn 

this case L should be can- 

celled out in the equation. 

I 

1 Since L is no longer unique- 

1 ly determining the cell spacing. 

Laminar Flow 

where V 
a g(P - Pv)6 

P 

Nu= C1(Ra '* ) I /4 (2) 

cp A T  

Berenson, Ref. 34 

Nu= C 3 k  '* ) 1 /4 (4) 

cp A T  

Chang, Ref. 38 

Turbulent Flow 

2 g(Pz - Pv)L 
where V 

Nu = C2 Pr(ci:T)2 

Kistemaker, Ref. 39 

/3 
(3) 

Frederking, Ref. 37 
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Figure 1. -Typical evaporation time curve for a liquid 
drop. 

I 11~113 

Figure 2. -Universal average drop 
thickness curve (ref. 5). 



0 WATER 
A ETHANOL 
v CARBON TETRACHLORIDE 

WATER EQ. (A), (E), (C) ARE 
v BENZENE LISTED IN TABLE I 
o ETHANOL 
n CARBON TETRACHLORIDE 
A WATER 
0 BENZENE 
0 ETHANOL EXTENDED 
n CARBON TETRACHLORIDE DROP WITH 

BUBBLE 

.1 1 10 100 1, M)(1 10, OM) 

Figure 3. -Universal  total vaporization t ime curve  (ref. 5). 

DIMENSIONLESS LIQUID VOLUME, V" = V / ( O ~ ~ / Q ~ ) ~ ~ ~  

I t I 
n 40 80 120 160 100 

TIME AFTER LIQUID REACHES SURFACE, SEC 

Figure 4. - Temperature of surface after 6 m i l l i l i t e r  drop 
of water reaches t h e  heating surface. 



0 7. 7x104 W/m2 1.0 mlsec 0.070 
a 2wA .; .4 .Q .: 1:O 1.12 1!4 

DISTANCE ALONG HEATING SURFACE, x, CM 

Figure 5. -Modif icat ion of laminar f i lm boi l ing equation by 
considering t h e  wave profile (ref. 32). 

Figure 6. - Distr ibut ion pattern of bubble cells from a 
hor izontal  surface dur ing  film boi l ing (ref. 40). 



CORRELATION FOR ALL 
VAPOR BuBBLEs7\, THE OTHER FLUIDS? 

- - \  _ -  

=--- - ~ 

PIP, U '1 ~ELIMFEREXT~AL 

0 -0.05 
In 2 2  . 0 6 -  .1 

0 .11- .2 
A .21- . 3  

.31-  .40 
0 . 4 1 -  .50 
0 .61 - .70 
Q . 71 -  .80 
v . 8 1 -  .89 
h .90- .95 

DIMENSIONLESS LENGTH TO DIAMETER RATIO, UDo 

Figure 7. - Saturated f i lm  boi l ing heat transfer data of nitrogen 
from atmospheric t o  the  cr i t ica l  pressure (ref. 49). 

40 80 120 160 200 240 
AT, "K 

Figure 8. - Instantaneous values of t he  f i lm thickness of 
vapor covering a 1-inch sphere in Nz  (ref. 57). 
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(a) Wall-temperature profi le for  the  case of constant heat f l ux  
(h igh  heat flux). 

(b) Wall-temperature profi le for  the  case of constant heat f l ux  
(low heat flux). 

I 
X 

(c) Wall heat f l ux  prof i le for t h e  case of constant wall temperature. 

Figure 9 



Run Bulk pressure, 
PSh 

1 7 %  
A 1146 
0 1152 
0 114) 
D 1151 
4 1162 
P 1248 
p 1251 
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a 558 
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CJ 561 
o w  
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Figure 10. - Subcritical hydrogen heat-transfer data in a two-phase flcw film boiling channel (ref. 74). 
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Figure 11. - Comparison of experimental temperature 
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500 

profiles wi th  calculations based upon various models. 
(ref. 83). 
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